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HEAT CONDUCTIVITY OF THE ADJOINING PLATES WITH
A PLANE HEAT SOURCE BETWEEN THEM

I. M. Fedotkin, E. V., Verlan, UDC 536.2:643.343,320.191.8
I. D. Chebotaresku, and S. V, Evtukhovich

The heat conduction problem in a two-layered plate with a plane heat source between the layers
is solved by the introduction of an unknown heat flux determined later from a Volterra integral
equation of the second kind by the Bubnov—Galerkin method,

The Laplace transform method has limited application in solving heat conduction problems in two and
multilayered walls because of the complexity of executing the inversion of the transform., A method is known
for the reduction of such problems to the solution of Volterra type integral equations of the second kind in the
unknown heat flux on the junction between the walls [1-3].

However, as is shown in [3], finite integral transforms result in a solution in the form of infinite poorly
convergent series requiring the application of special methods to improve their convergence, Moreover, rep-
resentation of the kernels of the Volterra integral equations in the form of infinite series does not permit ob-
taining the exact solution of the problem in analytic form.

It is expedient to use approximate methods based on the combined utilization of the Laplace integral trans-
form and the Ritz or Bubnov—Galerkin method to solve heat conduction problems in multilayered walls. Such
a method is developed in {4] for bodies of the simplest shape. In this case the solution of the Volterra integral
equations relative to interlayered thermal fluxes, and therefore the solution of the problem is also successfully
obtained in analytic form since the kernels of the integral equations consist of the simplest analytic functions
without series.

It is shown in [4] that numerical values of the temperature fields obtained by using approximate and exact
solutions agree with high accuracy.

The heat conduction problem considered in this paper is that a plane heat source, independent of the co-
ordinates and time, acts between two infinite plates starting from a certain time. The heat transfer at the outer
surfaces of the plates occurs according to the Newton law for a constant heat transfer coefficient. The thermo-
physical characteristics of the plates are independent of the temperature, The temperature of the plates at the
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initial instant T, is constant in the coordinate and equals the temperature of the surrounding medium Ty,. The
origin is on the outer surface of the left wall such that 0 =x = 84, 6, =0; +(6,~6,), &, is the thickness of
the left, and 6 4 — 6, is the thickness of the right wall.

The problem is written as follows in dimensionless form:

: 20 .
99 _ g, FO i1 (1)
d Fo L oaxe
Fo=0; ©,(X, 0)=6,(X, 0)=0, (2)
X=0; 9, _ Bi;0,, (3)
06, 00, .
X=X, 0, =0y ——— = Ki,, (4)
v Y 2 ax Ky, X Ki,
X=Xy — 8 _ Bi, 0,, (5)
0x

where 0 = X = X,, 0 = Fo = 2o, Ka s Kiy, Bi, o are constants,

Because Ki, = const the problem (1)-(5) formulated can be separated into two simpler problems, Let us
use the notation @ =uj + vi, where uj is the stationary component and v; the nonstationary component of the
temperature field. Then on the basis of the principle of superposition of fields, we have

0%u; . Ouy .
——=0,j=12, = Bijy, thly_, =tsly_o
axe ] X 5o 14, Maixex, 2’X~X1 ©6)
_ O = Biyy, 24 |_ g, % = Ki,.
0X  |x=x, 0X 0X  lx=x,

The solution of the problem (6) is the following: uj =cyX + cyjs 045 = KigKy5[1 + Biyp(Xp = Xp1 /A, Ky =
The nonstationary part of the temperature field is described by the system of equations:

Ju; 020,
Ky 2 g, = 1: 9, {7)
aF0 Kok ! 2
duy .
X L Bijy, (@) vily_y, = tily_y, (©) (8)
002 . 601 aU;,
—_—— = Biv,, (b ~ =0, d
X Xox, 2Y ( ) X Xex, & X lyx, ( )
6 (X, 0) = — 1 (X), 0(X, 0) = — 15, (X). ©)

The potentials v; and v, are interrelated by means of the boundary condifions (8). Introducing the unknown
heat flux function Ki(Fo) on the junction between the plates [3] we separate the problem (7)-(9) into two inde~
pendent problems for v; and v,. We here write the conditions for equality of the heat flux (8d) between the plates
in the form of two equations

vy :
g = Ki (Fo), (10)
0X  |x=x, Ki(Fo)
dv, | 1.
T2 = Fo). (11)
X |xex, K. Ki (Fo) v

After such a separation, the potentials vy and v, remain interrelated by condition (8c).
Applying the Laplace transform to (7)-(10), we obtain for the left plate

%0y (12)

W‘“P5_1~F1(X) =0,
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- i (p), (13)

where F((X) =cyX + ¢y
We seek the solution of the problem (12)-(13) in the family of functions of the form [4]:

56 = [+ XJ R0 4 3, @ )0 (X, 1)
iy / )

Y k=

where y(X) is a certain system of coordinate functions satisfying the homogeneous boundary conditions (13).
Such functions for the problem (12) -(13) are

e (X) = (—;— X*— X, X——‘X,—l—> Pl (15)

L

For a given selection of functions i the solution (14) satisfies the boundary conditions (13) exactly, and the
differential equation (12) approximately, whereupon the following residual is obtained:

_ 2p -
eufos(p), - o (P X1 = F2 — p5 — Fy (X) 0.

Let us demand the residual be orthogonal to the coordinate functions y j(X):

X

\ enlas(p) a(p) .., @ (p) XJs(X)dX = 0. (16)
0

Solving (16}, we obtain a system of algebraic equations to determine the coefficients ap(p):

> 4, (p) (4 — pBIY) = DIV (p), (17)
k=1
where
1) i Py (X) (1 a
A= | 6)(\2 P;(X)dX; B =j i (X)) @5 (X) dX;
6 0

1

X, X .
B ()= K3 9) [ (= + X)X 4 [ Fa00 (0 aX = pRi(o) DI + DI
b 1 / b

Setting n =1, 2,0r3 in (17), we obtain truncated systems of Bubnov —Galerkin equations of the first, sec-
ond, or third order, from which we deterr.ine the coefficients aj(p). In engineering computations sufficient ac-
curacy for practical computations is achieved in solving truncated systems of first- or second-order equa-
tions (17).

Solving the truncated first-ordersystem (17) and applying the inverse Laplace transform to a(p), we find
the solution of the problem for the left plate

0, (X, Fo) = [é X+ A (X)] Ki (Fo) — AyRuts (X) X

Fo

X j e R0 K5 (8) d8 + B, (X) exp (—R,Fo), (18)
0
where
Bii = — Xi 31;1 Xt X0
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1 5 4 C1y Clz) 3 Clz_
Bim— | 2o xt (O g e X3y ;
' B‘l‘l",% ui A (21311 U BiIJ

1 1 s 2
Ri= ——{(—X Xi
1 (3 1t Bll )

We obtain the solution for the right plate in an analogous manner:

v, (X, Fo) = 7(1_— [X — Xy — L 4 K91 (X)] — ARy (X) X
1y

Bi,
Fo
X j ¢ Re(F—8IK{ (8) 46 + B, (X) exp (— R, Fo), (19)
0
where
1+ Bi,X, 1 3 3 X1 2 2
Ao:% XX -2 X XD —
= TBOUK.K Bi [6 (X2 —X1) 5 (X7 — X7)
N . 1 4 4 X1 w3
X X)) | e | —— (X — XD — SR (X3 - X 5.
Bl.2\ 2 1):| B(l?l)KxKZ { S ( 2 1) 3 ( Xl)]y
B, = ;& [~—(X2#X1) Q—Xﬂ%—
11
Con 21 . -
2 [m—ﬁ—(xz—xlw (x X‘)J’Blz( - x|
Ry=—m [ %(xrxlw—(xz—xl)+———(xa—xo]
11
g [ M=xt e Ny xioxh N6 XX g |
e 20 ( "B, 3 " Bi, 2 Bi;

Bi
N=X,—X; + —22 X, — X1 X,Big;

1 N o
(X)) = [ — X2 — X X — 2(—1)
%) ( : X ) a0
The unknown heat flux Ki(Fo) is determined by substituting (18) and (19) into (20), whereupon a Volterra
integral equation of the second kind in Ki(Fo) is obtained. Because of the simplicity of the functions in (18) and

(19), the integral equation can be solved analytcially by an operator method.
The solution has the form
2
Ki(Fo) = ¥ (— 1y®yexp[v; (X) Fol, (20)
i=1
where
Dy (X) vi (X) — Dy, (X)

R i— (X) — v (X)
Pu(X) =~ ( 3 1B (0 — Bua (01,
Py ( TG B (0 Ry— Bygy (X) Rul;
M(x)= 00+ F L — 0, v —

are roots of the equations
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MX)pr+ B(X)p+c(X)=0,
B(X) = M(X)(Ry + Ry) — ARy (X) + A:Ropy (X)),
¢ (X) = RiRM (X) — A1 R Ry (X) + AR R0y (X).
The roots Vj(X) correspond to the physical meaning of the problem if they are real and negative.

Substituting (20) into (18) and (19), we find the explicit form of the functions v;(X, Fo), i =1, 2, and taking
account of the expression @ =uj + v; the solution of the problem in final form becomes

2 y . A
0 = enX +on+ 3 (— Wiy (X) 10— Wy, () e, (21)
i=1

where

AR P (X) Pagiyny (X
Wi = u: (X) Qogjyoy— B: (X) Do/ (X)

Ry —vi (X)
2
i = Al "‘IH-IM}Q—*B%(X)’!':]':I; 2,
Wis (X) = A:Rif (X) ]; (—1 R, vy 00
%y (X) = : + X+ A (X)),

Iy

xz(X>=[X—Xz-— ; +Kxcp1<X>]/Kx.

Ig

The approximate solution (21) of the problem (1)-(5) permits computation of the temperature field in
plates with not more than 5% error for Fo = 0.05 [4]. In contrast to the solution of problem (1)~(5) obtained
in [3], the solution (21) permits computation of the temperature field in a two-layered plate without involving
numerical methods to determine the function Ki(Fo).

NOTATION

Ka,=ay/a; =1, Kq, =ay/ay, Ky =hy/Ay Bl = ady/Ay, Biot criterion; Kig = qgd /A (T — Te)s Kir-
pichev criterion; Fo = ta,/6%, Fourier criterion; @ = (T — T/ (Ty — Ty dimensionless temperature; T, =Tg»
temperature of the surrounding medium; Ty,, maximum temperature of the material; qy, intengity of the plane
heat source; alld X = X/éz; Xi =61/62, X2 :52/62 =1.
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